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The bit-string model of biological aging introduced by Penna is investigated.
This is a well-established model, making use of mutation accumulation theory.
However, it turns out that a correct use of the Verhulst factor is not made and
therefore in a certain limiting case the model does not produce proper results.
Furthermore, care has to be taken when chosing the time steps in the model to
avoid unrealistic effects.

1. INTRODUCTION

Aging is a process characterized by the loss of functional abilities predomi-
nantly after maturation. In a mathematical language, aging, or senesence,
is defined as the decrease of the survival probability of an organism from
one period of time to another. Several factors are blamed for the cause
of senesence: the environment, metabolism, and so forth. Evolution
theorists'2'7) have pointed out that genetic factors may play a major role,
especially antagonistic pleiotropy and mutation accumulation.

During the last years various models have been simulated by means of
Monte Carlo.'3'8>9) According to Stauffer,(8) the most successful approach
is the bit-string model introduced by Penna (Penna-Bit-String Model,
PM),"'4""6' which makes use of mutation accumulation theory. The main
focus of this comment is the investigation of this model with respect to the
asymptotic dynamics of a simulated population since it is usually used for
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the gain of demographic parameters.(2) In particular the way to keep the
population within the computer memory limits is investigated, and the
effects of this limitation are pointed out. In section two the model is shortly
summarized, followed by its investigation in section three, and the conclu-
sion in section four.

II. THE MODEL

In the PM,<4) an initial population of N(t = 0) individuals is generated.
Each individual is characterized by a word of B bits related to its genetic
code. The age is considered as a discrete variable running for an individual
from 1 to B. The units of time are arbitrary, but mostly chosen as years.
If at age i the /th bit equals one, the individual is supposed to suffer the
effects of a deleterious mutation for the rest of his "life". It dies when the
number of such mutations exceeds a certain threshold T. The parameters
of the model are usually chosen to prevent an individual reaching the
age B.

When an individual arrives at a reproduction age R it produces b
offsprings. Since mutations are hereditary, an offspring gets the parental
bit-string, except M bits, which are randomly chosen. By this procedure,
deleterious and helpful mutations are possible. To keep the population
within the computer memory limits, "(the) effect of food and space restric-
tion is taken into account by an age-independent Verhulst factor, which
gives to each individuum a probability [1 —N(t)/Nauut'] of staying alive;
Wmax is typically ten times greater than the initial population N(Q), and
represents the maximum possible size of the population."'6'

III. INVESTIGATION OF THE MODEL

A. Asymptotic Population Dynamics

A population simulated by the PM can be subdivided into groups of
individuals all having the same genetic code. Since the genetic codes are
related to finite bit-strings the number of such groups is also finite. The
course of a simulation is cyclic and one cycle can be divided into two steps:

1. birth, heredity and death due to mutation accumulation

2. application of the Verhulst factor.

In the following the population dynamics is at first investigated without
taking into account the Verhulst factor. It is then density-independent
(cf. ref. 2) since the growth-rate does not depend on the total population
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size. The process of birth, heredity and death due to mutation accumula-
tion now introduces a random (logarithmic) growth rate rk(t) for the size
n k ( t ) of each group k

must be bounded for all t, which implies reasonable fluctuations. This
requirement shows that not all cases can be treated by this framework, but
a lot of relevant ones are covered. The largest value r = ma\{fk} ^0 is
called intrinsic rate of increasem since it dominates the asymptotic popula-
tion dynamics of a density-independent population, and the total popula-
tion size n(t) then approximately grows as3
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which is time dependent, e.g., due to fluctuations caused by the Monte
Carlo simulation. All groups k which die out at a finite time / (mutational
meltdown, cf. e.g. ref. 1) can be neglected since they do not play any role
for the long-term evolution of the population ( / -»oo) . For the other
groups the introduction of averaged growth rates

is convenient. For the existence of these limits the expressions

Now the second step of a cycle in a simulation is considered: the
application of the Verhulst factor. For the further investigation the two
steps of the simulation are exchanged. This is an alternative but equivalent
point of view possibly implying an incomplete first cycle. In each cycle the
population is then first reduced by a factor 1 —n(t)/NmaK and afterwards
(asymptotically) increased by a factor e'. Equation (1) now reads

3 For a continuous-time model the equation dn(t)/dt = rn(t) corresponds to Eq. (2) .



This equation serves as a starting point for the further discussion. It is
appropriate for the study of the asymptotic population dynamics in the
PM since for bounded n(t) only those groups will survive in the long run
which intrinsically grow at the largest averaged rate r.

B. Population Limitation

In the following the means used to limit the total population size of
the PM are investigated. Since there is some confusion, first the concept of
the Verhulst factor is reviewed. According to Charlesworth,(2)

"the classical approach to modelling a density-dependent
population is to write down a differential equation which
describes the rate of increase in the number of individuals, n,
in a local population

where g(n) is a continuous, decreasing function of n. ...The
simplest and most widely used form for g(n) is that of the
logistic growth or Pearl-Verhulst equation

For a discrete-time model like the PM (At= 1) Eq. (4) reads

First of all, the use of a Pearl-Verhulst factor is rather unrealistic, since one
assumes that both death-rates and fecundities, which regulate the growth of
a population, are independent of age but depend on the total population
size (cf. ref. 2). Furthermore, comparing this concept with the situation in
the PM, it becomes clear that the growth of a population and not its total
size if affected by the Verhulst factor. Thus the PM does not make proper
use of it. Considering Eqs. (1) and (2) a possible choice is
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but rather than Eq. (6), the asymptotic population dynamics is actually
described in the PM by Eq. (3).

C. Effects of the Limitation

Equation (3) is a well-known logistic equation.'10' For moderate r
(e r<3) a stable equilibrium population size ns is reached, but for large r
the dynamics becomes chaotic which may lead to bad results. This can be
avoided if smaller time steps are chosen in the model such that r has an
appropriate value.

The following discussion is now restricted to the case of moderate /-.
Inserting n(t + 1 ) = n(t) = ns in Eq. (3) yields
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yielding

and the latter equation is now discussed:

1. For r = 0, ns equals zero and the population dies out as in the case
of a mutational meltdown. This is an effect of the population limitation
concept changing the original population dynamics, i.e., the population,
which is stationary without limitation, vanishes independently of its current
size. Since for rather small populations restriction of food and space
normally do not exist, this is an undesired result.

2. For r > 0 the desired stationary, finite population is obtained.
However, if r is rather small the stationary population size ns is also rather
small. This might impede the determination of reliable demographic
parameters for which the population has to be sufficiently large. To avoid
this effect, larger time steps can be chosen such that r has an appropriate
value.



IV. CONCLUSIONS

As pointed out in Section III the PM<4) does not make a correct use
of the Verhulst factor. Due to its limitation scheme the PM does not
produce proper results in situations when the intrinsic rate of increase r is
rather small or large. In the former case, reliable demographic parameters
can hardly be determined since the equilibrium population is rather small;
in the latter case, the asymptotic dynamics becomes chaotic and bad results
may occur. Both cases can be avoided by the appropriate choice of the time
steps in the model such that r has a moderate value.

However, in the limiting situation when r equals zero one obtains the
same result as for a mutational meltdown independently of the time steps.
This should not occur since the corresponding unrestricted population is
stationary. For moderate r the model works well and produces reasonable
results.
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NOTE ADDED IN PROOF

After completion of this comment the author received a publication of
Bernardes et al. [Eur. Phys. J. B 1, 393 (1998)] on "Simulation of chaotic
behaviour in population dynamics" confirming the results in section IIIC.
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